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ABSTRACT

We examine a method for solving Liouville's equation,

consisting of successive application of short time propagators

which are evaluated by using fast Fourier transforms. The method

-
hl is examined numerically by computing electronic absorption

spectra. The procedure 1is very efficient when applied to the

". "l . 8

study of short time dynamics of systems whose guantum degrees of

freedom are spatially localized.
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] I. INTRODUCTION
;f We propose in this article a method for solving the equation
-.':
3 . -
::_. in 3% == (Hp PH,} ' (1)
. which describes a variety of physical processes. If the positive
B sign is taken and H = Hu = Hl is the Hamiltonian, Equation (1) is
s the gquantum Liouville equation (QLE) which gives the time
«f evolution of the non-equilibrium density matrix p(t). Taking the
negative sign and Hu = Hi leads to Heisenberg equation for the
temporal evolution of an operator p(t). The form with different
: Hamiltonians Hu # H 1is useful for the computation of the
electronic absorption1 spectrum
3 = ivt_-vt
Z(w) & (1/mMRe § dt e Y e” " Trp(t) . (2)
. o
lj Here
S P(t) = exp(-1iH t/R} p(o)exp(iH t/h} (3)
- and
‘ p(0) = u(r) exp(-le)/Z1 (4) R
with : R
2, = Tr{exp(-gH.,)} . . !T:.
- 1 1 et
.'. ‘.__.:_n
‘: ASRS
" _?:.-.‘
.
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The two Hamiltonians
H

. " —(nzlzm)vrwl(?)wo and H_ = -(52/2m)v3+vu(‘5)

(5)

represent .the nuclear motion in the "upper” and "lower" electronic

states and u(?) is the transition dipole moment between these
states. VI(R) and Vu(R) are the potential energy surfaces of the
two states and Eo is the energy gap between them. The Equation
(2) is a rearrangement of the usual expressj.o:mz-4 that gives the
absorption spectrum in terms of the Fourier transfogm of the
dipole-dipole correlation function. Since p(t) defined by Eq. (2)
satisfies equation (1) (with the plus sign) we can calculate
absorption spectra by solving Eq.(1) with the initial condition
given by Eq (4).

Thus it should be clear that the development of an efficient
method for solving Eq. (1) is of importance for non-equilibrium
statistical mechanics (transport theory and thermal rates) and the
spectroscopy of th;rmalized molecules (i.e. prepared in an oven or
imbedded in a condensed medium held at constant temperature).

We propose and test here a method which applies to the
present problem ideas developed by Fleck, Morris and Feit (FMF)5

for solving Maxwell's equations.
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II. THE METHOD OF SOLUTION Y

-(‘
In coordinate representation equation (1) can be written as '}#:

ih 3p(r,r';t) 3t = (~(n%/2m)(32/3r%) + (n%/2m)(3%/3r'?) +

SO S ST S S TSRS
™
L4

: - ' 1., -._-~
- Vo r) = Vi(r')} plr,r':t) (6) g
l For a very short time v we can write !ﬂﬁ

p(r,r';t+t) = wu(r,t)wI(r';r)p(r,r';t) (7) ffiﬂ
- where ;Ei
. _ 2 2 2 2 gig
_ wu(r.t) = exp{(ith /4m)vr) exp(—itvu(r)/h)exp((ith /4m)Vr) s
(8)
. . is the "split propagator" used by FMF.5 w;(r';r) is obtained from B

i Eq.(8) by replacing Vu(r) with Vl(r), Vr with Vr, and i with -i. Iﬁﬁi
B For n small time steps we have ;35
- T
| 53
: plr,r';at) = [W (r,T)W, (r',7)1" p(r,r';0) =

(G(r.r':1)‘[Uu(r;r)Ul(r:r)*]n-lG(r,r':r)p(r.r';o) (9)

i where E;T“
A Gir pr 2_ 2 o
- (r,r';1) = exp{(ih1/4m)(vr—vr,)} (10)

; and

: :

5 Uu(r,T) = exp((iht/Zm)Vr)exp{-iTVu(r)/h} . (11)

g

"-_ . -

Ul(r';T)' is obtained from Eq. (11) by replacing Vu(r) with

L} -
Vl(r ). Vr with Vr, and i with -1i.
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We compute p(r,r';:;nt) by using Eq. (9). The more difficult
part is the calculation of the effect of the operators containing
exponentials of the form exp((irh2/2m)vi). To illustrate the

procedure we show in detail the calculation of
X(r) = Uu(r,t)f(r,r') . (12)

where f(r,r') is a known function and Uu(r,f) is given by Eg.
(11).
Using Eq. (11) and simple manipulations based on the

representation theory we can write

3 - 2 -
X(r) = :dkzdr1<r2|k2> exp { i(gkzt/Zm)}<k2|r1>exp( irV(rl)/h)
(13)
t
f(rl,r )
Here we have used the momentum representation in which the
Laplacian is diagonal. The price paid for this easy

diagonalization is that we must perform the two integrals over dr

1

and dkz. Fortunately, since <k2|r1> and <r|k2> are plane waves,
the integrals are a Fourier transform and an inverse Fourier
transform, which can both be efficiently performed by using a fast

Fourier transform (FFT) routine.6

This method can be used for computing the effect of the
operators G and U. Repeated application for n small time steps T,
as indicated in Eq. (9), gives the evolution of p(r,r';t) from

p(r,r';0) to p(r,r';nt).
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The number of operations and the magnitude of the errors can
be analyzed to some extent, to establish the conditions under
which this method is most efficient. The error made by using the
"split propagator" for a short time t, is of order 13; if we were
to use p(r,r';nt) = (Uu(r,r)Ue(r';r)*)np(r,r';O), like in the path
integral theory7, the error would be of order 12. Furthermore, if
the dependence of p(r,r';t) on r and r' can be adequately
described on a N point grid, then each FFT requires, roughly,
NlnzN operations per coordinate; the equations discussed here have
two coordinates per degree of freedom. The number of grid points
N is L/1 Qhere L is the length over which p(r,r';t) is localized,
and 1 is the shortest length scale over which the p{r,r';t)
changes. Thus for each time step the number of operations
required to perform the necessary FFTs is 2(Nln2N)2. The
calculation of U also requires N multiplications with
exp{-ivu(r)r/h}, one for each grid point. The exponentials exp{-
itV(r)/A} are calculated once, at the beginning. Since two such
multiplications are required per time step, the total number of
such operations is 2N. The same number of multiplications are
required for the terms exp(—irhzki/Zm), where kn are the grid
points in the momentum space; these exponentials are also computed
once, at the beginning, since the grid points are not changed

during the calculation.

The total number of operations per time step is thus

T Y W W W VW W Y W WV WY




SRR PR Al S N S A S

’ R
! o
N N
) rr
\ 7 AT
' cuN
.I".-'.‘
bty
: 2 K
\ 2(Nln2N) + 4N. The number of time steps is determined by the :-:,-}".w
\ .
. physical characteristics of the problem at hand. In the case of %
N LS
%
I electronic absorption spectrum, which is used for illustration in
: E.
) this article, thc time step must be smaller than 2w/86, where § is - ‘
the width of the Franck-Condon envelope, and the length of time ::jf;"-i
I that p{t) must be propagated is of order y—l, where y is the width _-‘j
‘ )
of the narrowest line that we want to resolve.8 - ’
i
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III. The Calculation of Electronic Absorption Spectra

.

v

/

To test the method described here we have applied it to the

P4

.
A

'n.:o '."'l/"-,'a,\ .-" ,_‘_ g Y e

i i 4y l'll'," '._ﬂ
s 2 le D0 'n

problem of electronic absorption by a model diatomic molecule

e

et
.

whose ground and excited state potential energies are harmonic

oscillators of equal frequency w, = 0.01 a.u. = 2.72 meV = 2176

. cm 1, whose equilibrium positions are displaced by a length 6x = '}Q”

0.33 a.u. = 0.16 A, and whose reduced mass is that of a proton.

We chose this problem because the exact result is known.g i;f’
fﬁ Since the spectrum and the Hamiltonians have all the features j;f
il : expected in a realistic problem, the model provides an adeguate T

test of the method of computation.

The calculation starts with the assumption that the

e T T Ty T Ty
S

transition dipole u(r) is independent of r. There is no

additional difficulty in using a function for u(r); we used a

constant since exact results are available for that case. The

e

equilibrium density matrix.exp(—aﬁl}/zl was calculated in EREy

s
'

coordinate representation by using a FFT method proposed by

Hellsing, Nitzan and Metiu.l® This provides the exact initial 5}2

value p{(r,r';t=0), = <r|exp(—le)|r'>/zl. This is propagated by F =

using (9) and the method described above. The spectrum I(w) is

obtained from Eq. (2). Since the band edge ies determined by the

energy gap Eo between the states (i.e. the electronic excitation
energy) we can shift the spectrum arbitarily on the frequency ﬂ::
scale without causing confusion.

The length of time T for which we need to propagate

p(r,r';t) is set by the magnitude of y appearing in Eq. (2). Here

LN
..
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v 1is the rate of the slowest process causing the decay of the

upper state amplitude, and it could be the natural line width,11
the rate of a radiationless transition, predissociation, or photo-

dissociation in an additional degree of freedom whose dynamics is
4,12

not explicitly included; one can also think of exp(-yt) as a

"filter function"6 used to avoid the numerical difficulties

associated with computing 6 functions numerically. In the latter

3 case y must be smaller than the transition frequencies which one

intends to resolve when the spectrum is computed. We use
throughout the paper ¥T = § with y = 0.028 a.u. (y/w° = 0.28).

The dependence of the spectrum on the number of spatial grid
points is illustrated in Fig. 1. The result obtained with 32 grid
points is exact, that for 16 points is reasonably accurate, while
the use of eight points leads to serious errors.

The sensitivity to the number of spatial grid points appears
because the height of each peak and the total width of the
spectrum is determ;neg by the magnitude of the Frank-Condon
factors, which are wave function overlaps. A poor épatial grid

will result in erroneous high energy Franck-Condon factors, since

the highly excited wave functions appearing in them have a larger

number of spatial oscillations and these are not well described on

i
.

a coarse grid. When an insufficient number of grid points is used

- v

O
LG A A

the low frequency part of the spectrum is usually not as bad as

s 0 %
(A

the high frequency one.

R

In Figure 2 we show the dependence of the spectrum as a

function of the number of time steps. The results obtained by

TN P R P A .‘_"’_-'. L UL NN
.t . ORI I I S i O R R R IR G L S e _'\ ST L e e e e T e e e -
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kﬁ using 1000 time steps are exact, those using 25 steps are adequate sae
% and the error made by this dramatic lowering of the number of a;
w steps occurs mainly at the low intensity side of the spectrum, ‘-ﬁ
.f where the experiments are also likely to be less accurate. , ??;
;; In Figure 3 we show the temperature dependence of the ﬁg
> spectra. The increase ip temperature causes the growth of the hot é.,
E’ bands and a corresponding decrease in the peaks which are present - z

at zero femperature. ;
IV ~ DISCUSSION
i Both actual calculations and estimates of the number of ii:
‘§ operations indicate that the present method of solving the Z;E
‘:% Liouville equation is very efficienct if: (a) the density matrix, :;J
5: in coordinate representation, is spatially localized; (b) the E;:
§; density matrix changes with position over a sizable space scale; iﬁi
;j (c) the duration of the dynamic process of interest is short (in ;ii
j; spectroscopy this means that the Franck-Condon envelope is broad); :si
E (d) the r;qu;red time step is small (in spestroscopy this means Eﬁi
-é that the ratio between the width of the nafrowest line and the iii
. width of the envelope is large); (e) the problem has few quantum %
E;; degrees of freedom. iff
ii Even though a theory based on Licuville's equation is more é;é
.; general than one provided by the Schrodinger equation, such a .JM
:: formulation is not élways required, nor is it generally advisable. =
SE In cases when kBT is comparble to the excitation energy of the
«{, quantum system, it is computationally more efficient to propagate -

the few states which are thermally populated and average the igﬁ

iu

S R R S
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results with a guantum Boltzman factor. This happens because the
dimensionality of the Liouville equation is twice that of
Schrodinger equation.

When we deal however with molecules imbedded in a condensed
medium, whose molecules are held at constant temperature and are
propagated by classical mechanics, the situation is not so clear
cut.

Under these circumstances the initial conditions for the
quantum degrees of freedom are determined in two steps: First we
use the Monte Carlo method to establish the position of the atoms
of the medium and to compute the poﬁential energy of molecule in
the presence of the medium; then we determine the gquantum density
matrix of the molecule for these potentials. Under these
conditions the molecular wave functions are much more difficult to
determine than the equilibrium density matrix. Therefore, since
the initial state is defined by the density matrix fhe subsequent
time evolution (caused by the electromagnetic field and the"
classical motion of the mclecules of the medium) and the spectrum

corresponding to it, must be calculated by solving the Liouville

equation. The same is true for rate or transport processes.

The reason why the present method might play an important

RN
role in future developments is that it is so efficient that such Lok

calculations - which require the calculation of the quantum

evolution of the molecule's density matrix for each Monte Carlo
configuration of the molecules in the medium - are possible if the ~f4;

problem has one or perhaps two degrees of freedom which are ;Ej
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spatially localized, and the process is completed in a reasonably

)
g

short time.
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Fig. 1.
Fig. 2.
Fig. 3.
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FIGURE CAPTIONS

The dependence of the computed spectrum on the number
of points N in the spatial grid. Full line N=8;
dotted lines N=16; dashed line N=32. We have used
1000 time steps, mo/ka'r = 12.5, @ = 272 meV = 0.01 ) ;_'
a.u., y/w, = 0.28. e

Spectra computed with various time steps: full line,
1000 steps; dashed line, 100 steps; and dotted line,

25 steps. The spatial grid has 64 points. The

parameters are those used in Figure 1.

Spectra at various temperatures. The parameters are
those used in Fig. 1.
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